Example 4.
Nonexistence of optimal controls 
(Part 2)

The specific feature of the previous example was that the optimal control problem was unsolvable as well as the corresponding system of necessary optimality conditions. Although it may seem to be the worst possible sit​uation, we will show that there are problems with even more unfavorable properties.
So far we have studied optimization problems with free final state. In the following example, we need to find a control that transfers the system from one fixed state into another while minimizing a certain functional. The max​imum principle can be applicable in such problems. In this case, boundary renditions for the adjoint equation are not specified, whereas the state equa​tion has two boundary conditions. Nevertheless, the system of optimality conditions appears to represent a reasonable problem which may be solvable. In the process of analyzing the maximum principle for a specific example, we find what seems to be a unique solution. However, it becomes clear that there exists an admissible control that provides an even smaller value of the functional. Such a result can only be explained by the unsolvability of the optimization problem.
One of the possible reasons for the nonexistence of optimal controls may be the fact that the set of admissible controls is unbounded. However, we will show that it is possible to establish the existence of a solution even under this condition. As in the previous example, we will find out that the problem may be unsolvable because the functional being minimized is nonconvex. 
Another surprise is the vanishing of the remainder term in the formula for the functional increment, which seems to imply that the optimality condi​tions are sufficient. At the same time, the existence of a nonoptimal solution of the maximum principle means that the optimality conditions are not suf​ficient. The reason for these surprising results is that the obtained control only provides a local maximum of the function H and is not a solution of the maximum condition.
4.1.    PROBLEM FORMULATION

Let the state of the system be described by the Cauchy problem
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(4.1)
The set of admissible controls U consists of functions 
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 such that the solution x of problem (4.1) satisfies the equality
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The optimality criterion is represented by the functional
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Problem 4. Find a control 
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 that minimizes the functional I on U.
The main difference between Problem 4 and the previous problems is in condition (4.2), which represents a fixed final state. Thus, only the sys​tem states that have predefined initial and final values are admissible (see Figure 18).
Remark 4.1. Strange as it may seem, the optimality criterion docs not depend explicitly on the system state. For this reason, system (4.1) may appear to be unrelated to the functional being minimized. Moreover, the minimum value of the functional is equal to unity, which is achieved only at the control identically equal to zero. However, the corresponding system state, which is a solution of problem (4.1), is also equal to zero and therefore does not satisfy the boundary condition (4.2). Therefore, the zero control is certainly not admissible and cannot be a solution of Problem 4. In this case, the state equation is used to determine the set of admissible controls and thus affects the optimality criterion. 


Figure 18. Admissible states
Remark 4.2. The constant function и = 1 is an example of a control tat takes the system from one state to another in a given period of time. The system is said to be controllable if it is possible to find a control that transfers it to a given state. The investigation of this important property is beyond the scope of this book.
For the problems with fixed final state, it is necessary to modify the procedure of deriving the maximum principle.
4.2.   THE MAXIMUM PRINCIPLE FOR SYSTEMS WITH FIXED FINAL STATE

In this section, we obtain a necessary optimality condition for a general system with fixed final state. The system is described by the equation
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(4.3)
with the additional condition
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(4.4)
The control и is chosen from a certain set U. The optimality criterion is represented by the functional
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Problem 4΄. Find a function 
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 that minimizes the functional I on U under the condition (4.4).
Remark 4.3. We certainly should have specified the form of elements of the set U. In this case, however, our only purpose is to establish the form of the necessary optimality conditions for a problem with fixed final state.

Assume that u is an optimal control, i.e., for every control 
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 such that the corresponding state y satisfies (4.3) and (4.4) we have
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(4.5)

where x is the optimal system state.

Remark 4.4. The problem of finding a control in U that transfers the system from one given state to another will not be considered here.

As before, we introduced the functional
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and the function
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Then condition (4.5) implies the inequality
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which is analogous to condition (5). Performing transformations similar to those in the derivation of the maximum principle for the problem with free final state (see Introduction), we obtain
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where the notation is the same as before.

Since the function p is arbitrary, we will choose it so that the following adjoint equation holds:
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Therefore, we have
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which coincides with condition (10) (up to the properties of the function v).  We conclude the derivation of the optimality conditions with the usual procedure and finally obtain the maximum principle

[image: image18.wmf][

]

[

]

).

,

0

(

,

 

)

(

),

(

,

max

 

 

   

)

(

),

(

),

(

T

t

t

р

t

x

w

H

t

р

t

x

t

u

H

U

w

Î

=

Î

 
(4.7)
Theorem 6 [The maximum principle]. For the control и to be a solution of  Problem 4', it is necessary that и satisfy the maximum condition (4.7), where  x satisfies (4.3), (4.4) and p satisfies equation (4.6).
Remark 4.5. We again omit the restrictions imposed on the system which make this result possible.
It may first seem that the obtained system of optimality conditions is not really well defined. On one hand, the problem for the state function is overdetermined, since there are two boundary conditions specified for the first-order differential equation. On the other hand, there are no conditions specified for the adjoint equation. However, we actually consider a system of two first-order differential equations with two boundary conditions, which makes the system of optimality conditions reasonable.
Conclusion 4.1. The maximum principle is applicable for solving the optimal control problem with fixed final state.
4.3. APPROXIMATE SOLUTION OF THE OPTIMALITY CONDITIONS
Our purpose now is to find out how the obtained system of optimality con​ditions can be solved in practice.
Since there is no boundary condition for the adjoint system, it is not to apply the method of successive approximations the way it was in the optimal control problem with free final state.
One of the methods that can be used for the approximate solution of the system of optimality conditions (4.3), (4.4), (4.6), (4.7) is the shooting method, in which the following additional condition is introduced
p(0)=a,



(4.8)

where a is an unknown numeric parameter. Suppose that the control is expressed in terms of x and p from the maximum condition (4.7). then, soecifying a certain value of a and solving the Cauchy problem (4.3), (4.6), (4.8), we can find x and p, which will obviously depend on a. we now define the function
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where x(T) is the value of x at t=T for the given value of a. For condition (4.4) to hold, the parameter a must be chosen so that

F(a)=0.



(4.9)

Equation (4.9) can be considered as a nonlinear algebraic equation for the numeric parameter a. It can be solved using an iterative method, for example, the method of simple iteration defined by the formula
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   (4.10)
where 
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 is an iteration parameter.
The algorithm procedure is organized as follows. First, we specify the initial approximations of the control and the parameter a. Then we solve the Cauchy problem (4.3), (4.6), (4.8) to find the functions x and p and, consequently, the function F. The next approximation of the control is determined from the maximum condition (4.7) for the obtained values of x and p. The new approximation of the parameter a is determined from formula (4.10). The calculations are continued until the desired accuracy is achieved.
Conclusion 4.2. An algorithm based on the shooting method can be used for solving the system of optimality conditions in an optimal control problem with fixed final state.
Remark 4.6. The question arises of whether the described iterative process converges. The same applies to all approximation methods, in par​ticular, for the method of successive approximations in an optimal control problem with free final state. Experience leads us to conclude that the con​vergence of iterative procedures for the problems with fixed final state is substantially worse than for the problems with free final state.
Remark 4.7. Instead of (4.8), we could specify the value of p at the final instance of time, which is more natural for the adjoint system state. In this case, both the original and the adjoint problem are solved successively rather than in parallel at every step of the iterative process. Equation (4.9) and formula (4.10) remain unchanged.
4.4.   THE OPTIMALITY CONDITIONS FOR PROBLEM 4
We now derive the necessary optimally conditions for the example in question. Set
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From the maximum principle (Theorem 6), it follows that the optimal control satisfies the equality
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(4.11)
where p is a solution of the adjoint equation
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(4.12)
As a result, we have the system of optimality conditions (4.1), (4.2), (4.11), (4.12) for the optimal control. We now determine the control from (4.11). First of all, equating the derivative of H to zero, we obtain
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(4.13)
From equation (4.12) it follow that p is constant.  Then (4.13) may be written in the form
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(4.14)
where с is a constant.
This is a nonlinear algebraic equation since its left-hand side is a function of the desired control. Only a constant (not necessary unique) can be a solution of this equation because there is no dependence on time in problem (4.14).

Denoting the corresponding constant value of the control by c1, we determine the function x(t)=c1t from condition (4.1). Setting t=1, we have c1=1. Thus, the unique solution of the optimality conditions is the constant function u0=1.
Conclusion 4.3. There exits a unique constant control u0 the derivative of the function H vanishes.
We have obtained the value of u0 from the condition that the derivative of the function H vanishes. However, it is not clear whether this control provides the maximum for the function H. Let us find the second derivative
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Since the second derivative is negative for и= u0, we indeed have the maximum point. Thus, the desired triple of functions is
u0(t) = 1 ,  x0(t) = t ,  p0(t) = 2-7/4.
The value of p0 is determined from (4.13) for и= u0.
Conclusion 4.4. The system of optimality conditions (4.1), (4.2), (4.8), (4.9) has a unique solution u0, x0, p0.
Remark 4.8. Generally speaking, we have some reasons to be doubtful about the foregoing statement, which could put at risk our further arguments. Nevertheless, we will proceed with our analysis until we finally get the answers.
Our purpose now is to find out whether the obtained control is indeed a solution to the problem under consideration, although it might seem obvious that the unique solution of the maximum principle is optimal.
4.5.    DIRECT INVESTIGATION OF PROBLEM 4

We now turn to direct investigation of Problem 4.
The integrand term of the functional being minimized is obviously not less than unity. Thus, we have the estimate from below for the value of the optimality criterion.
We specify the following sequence of controls (see Figure 19):
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Figure 19. The minimizing of controls in Problem 4
The corresponding sequence of system states is (see Figure 20):
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Figure 20. The sequence of controls in Problem 4

Obviously, we have xk(1)=1, i.e., the boundary condition (4.2) holds for the system states xk (which is the main reason for choosing the sequence of controls uk(t)). This mean that uk are admissible controls.
We now find the corresponding values of the functional:
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The sequence 
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. It follows that the functional does not assume the values less than unity at any control, but there exists a sequence of controls that transfer the system to a given state such that the values of the functional at these controls tend to unity. 
Conclusion 4.5. The lower bound of the functional on the set of admissible controls is equal to unity.
Since we found the unique solution u0 of the maximum principle, it may seem natural to suppose that this control provides the minimum of the functional. However, we have
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A paradoxical conclusion follows:

Conclusion 4.6. The value of the functional at the unique solution u0  is greater than its lower bound on the set of admissible controls.

This makes us revise our view of the optimization problem in question.

4.6.    REVISING THE PROBLEM ANALYSIS

The fact that a solution of the maximum principle may be nonoptimal is not surprising for us anymore. We already saw this in the case where the optimality conditions are insufficient. It also would not be strange if the maximum principle had no solutions in the case of unsolvable optimization problem. The paradox of the current situation is that the unique solution of the maximum principle is not optimal.
As we know, by definition, an optimal condition is necessary if it holds for every optimal; control. Then the only reason for the unique solution of the maximum principle to be nonoptimal is the unsolvability of the optimal control problem. Indeed. If there exists an optimal control, then it satisfies the maximum principle. However, its unique solution u0 is not optimal.

Conclusion 4.7. Problem 4 is unsolvable.

This situation is much worse than the one we had while solving Problem 3. The optimal control problem in Problem 3 was unsolvable, but the maximum principle was unsolvable as well. We often have to start solving applied optimization problems without knowing whether they are actually solvable. Various difficulties encountered during the solution, for example, the situations where the algorithms do not converge, may lead us to think that there is something wrong in the problem formulation rather than in the algorithm of solution.
In Problem 4, the numerical algorithm would probably converge to the control u0 (although it is not certain). Additional analysis may show that there are no other solutions. Thus, it may seem obvious that the optimal control has been successfully found. Unfortunately, this is a false conclusion which may cause a lack of confidence in the methods of optimal control theory. The truth is that standard optimization methods are really effective, but not in the cases where there is no optimal control.
Conclusion 4.8. The unique solution of the maximum principle may be nonoptimal if the optimization problem is unsolvable.
The question arises whether it is possible to prove directly that there is no optimal control. If the lower bound of the functional being minimized (which is equal to unity) is achieved, then the control must be equal to zero. But the corresponding solution of problem (4.1) will be also equal to zero and therefore will not satisfy the boundary condition (4.2). As a result, the unique control at which the functional achieves its lower bound cannot transfer the system into the specified final state. Hence, the control is not admissible.
Conclusion 4.9. There are no controls that transfer the system (4.1) to the given final state and minimize the functional at the same time.
We now turn to the minimizing sequence {uk}. The norm of uk in the space Lp(0,1) is equal to
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For p > 1, the sequence {uk} is not bounded and does not converge to any limit (not to mention the nonexistent optimal control).
Remark 4.9. The Banach-Alaoglu compactness criterion is applicable not only in Hilbert spaces but also in reflexive Banach spaces such as Lp{0,1) for p> 1. The sequence {uk} is bounded in the space L1(0,1), however, in this particular space this does give us any information about the possible convergence of the sequence {uk}.
All previous examples dealt with bounded sequences, which was due to the fact that the set of admissible controls was bounded. In Problem 4, the situation is different. This leads us to suppose that the reason for the nonexistence of an optimal control is that the set of admissible controls is not bounded.
However, this is not the only reason. In particular, a function of one variable (for example, the parabola) can achieve its minimum (zero) on the set of real numbers, which is an unbounded domain. However, it is not clear whether it is possible to prove that the optimization problem is solvable if the set of admissible controls is not bounded. This will be the subject of our further analysis.
4.7.    PROBLEMS WITH UNBOUNDED SET OF ADMISSIBLE CONTROLS
We now return to the general theorem on the existence of an optimal control and try to prove the same assertion without the assumption that the set of admissible controls is bounded. Note that this property was only used to prove that the minimizing sequence is bounded. Thus, our goal will be achieved if we manage to prove a similar assertion without using the set of admissible controls.
We will impose certain additional restrictions on the functional to be minimized. Let the assumptions of Theorem 4 hold, except for the assump​tion that the set of admissible controls is bounded. Namely, it is required to minimize a convex lower semicontinuous functional I bounded from below on a closed convex (not necessarily bounded) subset U of a Hilbert space V. In addition, we assume that I is coercive. This means that 
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As before, there exists a minimizing sequence, i.e., a sequence of 
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. At the same time, the functional on the minimizing sequence must con​verge to the corresponding lower bounds rather than infinity. Therefore, our assumption that {uk} is not bounded is wrong. Having proved that the minimizing sequence is bounded, we repeat the arguments of the proof of Theorem 4 to establish the existence of an optimal control.
Conclusion 4.10. The existence of an optimal control may be estab​lished without the assumption that the set of admissible controls is bounded.
Remark 4.10. If the functional is coercive, we can prove that the min​imizing sequence is bounded. However, this does not imply that the norm of every admissible control must be bounded. Since the set of admissible controls is not bounded, this is not possible.
The obtained results can be summarized in the following theorem.
Theorem 7. The problem of minimizing a convex lower semicontinu​ous coercive functional bounded from below on a convex closed subset of a Hilbert space is solvable. 
To demonstrate the effectiveness of this statement; we consider the fol​lowing example.
Problem 4". Find a control u = u(t) that minimizes the functional
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in the space of square-integrable functions, where x is a solution of the problem
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Remark 4.11. The only difference between this problem and Problem 0 is that Problem 4" has no restrictions imposed on the control.
Since the set of admissible functions coincides with the entire space L2(0,1), Theorem 4 cannot be used to establish the existence of an optimal control. We now prove that the functional I is coercive. Indeed, let {uk} be an unbounded sequence, i.e., 
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where xk is the system state corresponding to the control uk. Then 
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, i.e., the functional I is coercive. Taking into account that all other assumptions of Theorem 7 hold, we conclude that Problem 4" is solvable.
Conclusion 4.11. Problem 4" is solvable.
Remark 4.12. As we know, Problem 0 has a solution identically equal to zero. The zero control is also a solution to Problem 4" since it is the only control that provides the zero value of the nonnegative functional I.
Thus, the unboundedness of the set of admissible controls is not the reason for the optimization problem to be unsolvable. The unsolvability of Problem 4 may be caused by some unfavourable properties of the set of admissible controls or the optimality criterion.
Solving the Cauchy problem (4.1) and using condition (4.2), we can represent the set of admissible controls in the form
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Figure 21. The function g is not convex
For any two elements u and v of the set U and any number 
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It follows that the control au + (1 - a)v belongs to U and therefore U is convex.
At the same time, it is easy to see that the functional being minimized is not convex. In particular, the integrand function g in the optimality criterion defined by the formula
is not convex (see Figure 21).
The functional is not coercive either. The minimizing sequence defined above is not bounded, although the values of the functional at the elements of this sequence converge to the lower bound of the functional rather than infinity.
Conclusion 4.12. Problem 4 is unsolvable because the functional to be minimized is neither convex nor coercive.
Remark 4.13. In Example 7, we will establish the existence of an optimal control in the case where the set of admissible controls is not only unbounded, but also nonconvex. 
4.8.    THE CANTOR FUNCTION
Having analyzed the unsolvability of the extremum problem, we now take a step in a different direction to present a remarkable function directly related to the subject of our analysis.
First, the time interval [0,1] is divided into three equal parts. We put y(t)=1/2 in the second subinterval (1/3, 2/3). At the second step, we divide each of the other two subintervals into three equal parts and put
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At the third step, each of the remaining four parts is divided into three equal parts and the values of y on the middle subintervals are set to be 1/8, 3/8, 5/8, and 7/8, respectively. Proceeding with this process indefinitely, we thus define the function y(t) on a subset S of the interval [0,1]. We then extend y to the complement set C= [0,1] \ S, which is called the Cantor set, so that the resulting function is continuous. The extension is possible since the variation of y is sufficiently small in any neighborhood of any point of the Cantor set. The resulting function is called the Cantor function (see Figure 22). 






Figure 22. The Cantor function
The Cantor function possesses remarkable properties. It is continuous and monotonic by construction. It is differentiable at every point of S, the derivative being equal to zero. We now determine the measure of S. Summing up the lengths of the intervals on which the Cantor function was defined at each construction step, we have
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Thus, the measure of the subset S of [0,1] is equal to the measure of [0,1]. Consequently, the complement set C is a set of zero measure. Thus, the derivative of the Cantor function is equal to zero almost everywhere in [0,1].
Note that the values of the Cantor function at the ends of the interval [0, 1] are the same as those specified for the system state function in the formulation of Problem 4. Let w be a control equal to zero on S, i.e., vanishing almost everywhere in the given domain. We can consider to be defined on the whole interval [0,1] because measurable functions are defined up to a set of zero measure. Then the Cantor function is a solution of the Cauchy problem (4.1) corresponding to this control. The control w seems to be admissible because it transfers the system from one state into another in the required time. Taking into account that the derivative of the Cantor function is equal to zero almost everywhere, we have w = 0 almost everywhere in [0,1]. The value of the optimally criterion for this control is equal to unity, which is the lower bound of the functional to be minimized on the set of admissible controls,
We seem to have found an admissible control such that the value of the functional at this control is equal to its lower bound. Thus, the control w seems to be optimal. Now, since we proved that the optimization prob​lem in question is unsolvable, we have to find a contradiction in our latest arguments.
Consider the boundary value problem
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Integrating the equation over the given time interval and using the boundary conditions, we obtain
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The integral in the left-hand side of this equality can be written as the sum of the integrals of w over S and C. Since w vanishes on S, it follows that 
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Thus, the integral of the control w(t) over the Cantor set C is equal to unity, which is a contradiction because C is a set of zero measure. Hence, w is not integrable and therefore does not belong to the set U of admissible controls.
Conclusion 4.13. The function w, which transfers the system to a given final state in the specified time, is not an admissible control because of its functional properties.
Remark 4.14. The derivative of the Cantor function (and, conse​quently, the corresponding control) is meaningful only in the context of the theory of generalized functions.
The above analysis shows that the optimal control problem in question could be solvable if the admissible controls were defined as objects of a more general type rather than the usual integrable functions.
Conclusion 4.14. Unsolvable extremum problems may become solvable for more general classes of admissible controls.
Summing up, the optimal control problem under consideration is un-solvable in the traditional setting, but the obtained contradiction can be overcome in a more general context. However, the analysis of this problem is far from being finished yet.
4.9.    FURTHER ANALYSIS OF 
THE MAXIMUM CONDITION
We now return to the analysis of the maximum principle in Problem 4. We estimate the remainder term in the formula for the functional increment
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Since the state equation and the optimality criterion do not contain non​linear terms with respect to the state function, we conclude that 
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. Besides, there are no terms containing both the control and the system state at the same time, which means that 
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Conclusion 4.15. The remainder term in the formula for the functional increment in Problem 4 is equal to zero.
Taking into account Theorem 2, this conclusion seems to imply that the maximum principle is a necessary and sufficient optimality condition for the problem in question. Moreover, since the remainder term vanishes, it follows that there is no information loss in the process of deriving the maximum principle. Thus, the maximum principle certainly does not hold for nonoptimal controls. At the same time, we know that the solution u0 is not optimal. How could we come to a wrong conclusion in the situation where all the arguments in the derivation of the maximum principle are reversible? The only answer is that the maximum principle might have no meaning in this case, which follows directly from the nonexistence of optimal controls.
The truth is that we obtained the maximum principle under the assump​tion that there exists an optimal control, but it turned out that the problem is actually unsolvable. Therefore, all further arguments were groundless. While this may seem to explain the contradiction, the question arises of whether the maximum principle has any meaning under the condition that there is no optimal control and the remainder term in the formula of the functional increment vanishes.
Let a function u satisfy the maximum principle (4.11) for Problem 4:
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and U is the set of controls transferring the system (4.11) to a given final state. Integrating the foregoing inequality, we have
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Denoting by 
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 the difference between the system states at the controls v and u and taking into account the adjoint equation (4.12), we obtain
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Integrating by parts and using (4.1) and (4.2), we get
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By the definition of the function H,
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Hence, the value of I at the control u is less than its value at any other control transferring the system to the given final state. Consequently, the control u is optimal.
Conclusion 4.16. Every solution of the maximum principle for Problem 4 is an optimal control, i. e., the optimality conditions are necessary and sufficient.
Remark 4.15. The above conclusion obviously follows from the fact that the remainder term in the formula of the functional increment is equal
Conclusion 4.17. The existence of an optimal control is not required for the proof of sufficiency of the optimality conditions.
Thus, on one hand, a solution of the maximum principle in Problem 4 must be an optimal control; on the other hand, the solution of the maximum principle obtained above is nonoptimal. This contradiction leads us to revise some premature conclusions made in the process of analysis of the optimality conditions.
4.10.  CONCLUSION OF THE PROBLEM ANALYSIS
We now return to considering the maximum condition (4.11):
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We start with equality (4.13):
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where p is constant, as we already know.
Note that u = 0 and p = 0 satisfying the foregoing equality obviously do not satisfy the optimality conditions since the zero control corresponds to the zero system state, which contradicts condition (4.2). Then equality (4.13) can be written in the form
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where
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Depending on the constant c, the algebraic equation (4.15) may be unsolv​able or have one or two solutions (see Figure 23). 
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Figure 23. Equation (4.15) may be unsolvable or have one or two solutions
The constant c is defined by the (constant) solution of the adjoint system and must be such that the corresponding control satisfies condition (4.2).
If the absolute value of c is sufficiently small (
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 in Figure 23), then equation (4.15) and the system of optimality conditions are unsolvable. For two values of c (
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If 
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, we have a constant control u0 with the corresponding solution x(t) = u0t of problem (4.1), so that 
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, then the corresponding control is negative and therefore x is a decreasing function and (4.2) fails.
We now consider the case where the absolute value of c is large enough for equation (4.15) to have two solutions. If we take one of the obtained constants for the control, then (4.2) will either yield nothing (if the control is negative), or again give us u0 (if the control is positive). It may seem that the control u0 determined above corresponds to the unique solution of the optimality conditions, but there is one more possibility that could not be foreseen.
The control might be piecewise-constant. It may assume two values u1 and u2 corresponding to two solutions of equation (4.15) and, consequently, to one solution of the adjoint equation. As follows from Figure 23, both values must have the same sign. If the control is negative, then the function x decreases and therefore does not satisfy condition (4.2). For this reason, we only consider the case of positive u1 and u2. 
Assume that there exists a point 
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(4.16)
The corresponding solution to problem (4.1) has the form 
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(4.17)
In order for the condition (4.2) to hold, we set

[image: image85.wmf].

1

)

(

)

1

(

2

2

1

=

+

-

=

u

u

u

x

x


Hence,


[image: image86.wmf].

  

1

  

  

  

1

2

2

u

u

u

-

-

=

x


This value must belong to (0,1), which implies 
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Suppose that 
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, and the corresponding function p is a solution of the system (4.1), (4.2), (4.12), (4.13) (see Fig​ure 24).
Note that formula (4.16) requires that the values of u1 and u2 be known. These values are uniquely determined from equation (4.15) for a given value of the parameter c. Evidently, for every 
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. For every c > 23/4, there is a unique pair of positive numbers u1 and u2 that define the solution of the problem (4.1), (4.2), (4.12), (4.13) given by formulas (4.16) and (4.17) (see Figure 24).
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Figure 24. The solution of the system (4.1),(4.2), (4.12), (4.13) is not unique
Conclusion 4.18. The system (4.1), (4.2), (4.12), (4.13) has infinitely many solutions, the set of solutions being uncountably infinite.
Note that under the assumption that the control assumes only two val​ues u1 and u2 and has two points of discontinuity, we obtain new solutions of  the system (4.1), (4.2), (4.12), (4.13). It is important that for any constant c > c1 we can find a unique pair (u1, u2) and, consequently, a new solution of the system. Moreover, having one solution, we can shift the points of discontinuity 
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 so that the shifted points belong to the interval (0,1) and the distance between them remains the same. As a result, we would get a new control with two points of discontinuity that also satisfies the system (see Figure 25). The case of three and more points of discontinuity is also possible.
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Figure 25. Solutions of the system (4.1), (4.2), (4.12), (4.15) where the control has two points of discontinuity 
Conclusion 4.19. The conclusion on the number of the solutions of the system of optimality conditions for Problem 4 needs to be revised.
So far we have been analyzing the system (4.1), (4.2), (4.12), (4.13). However, it is not obvious that the obtained solutions of this system satisfy the maximum principle (4.11). This means that we must return to analyzing the function
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The function H obviously tends to infinity as u increases. Therefore, H has no global maximum. The solutions of the equation 
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 may only be the points of local extrema or the points of inflection. In particular, the control u0 corresponds to a local maximum of H (since the second derivative of H is negative).

Conclusion 4.20. The control u0 provides only a local maximum to the function H.

The most important conclusion follows.

Conclusion 4.21. The maximum condition for Problem 4 is unsolvable.
Based on the analysis that has been carried out, we conclude that the optimality conditions in the form of the maximum principle in Problem 4 are unsolvable. Therefore, it turns out that the present example is similar to the previous one, although we have spent much effort to establish this fact. We finally arrive at the following conclusion.
Conclusion 4.22. The maximum principle for Problem 4 is a necessary and sufficient optimality condition.
It is not surprising anymore that the value of the optimality criterion at the control u0 turned out to be greater than its lower bound because this control is not a solution of the maximum principle. All the contradictions in our arguments have now been resolved, which completes the analysis of the present example.
SUMMARY
The analysis of the present example can be summarized as follows.
1. The maximum principle is meaningful for the problems with fixed final state.
2. In the problems with fixed final state, the problem for the system state is overdetermined, whereas the problem for the adjoint system is underdetermined.
3. An iterative algorithm based on the shooting method can be applied to the corresponding system of optimality conditions.
4. If the functional to be minimized is coercive, the existence of an opti​mal control can be established without the assumption that the set of admissible controls is bounded.
5. The existence of an optimal control is not required to prove that the optimality conditions are sufficient.
6. In the case where there is no optimal control, the maximum princi​ple may be solvable. This means that the optimality conditions are insufficient.
7. A control may be inadmissible if it does not belong to a specified function class.
8. Unsolvable extremum problems may be solvable for more general classes of admissible controls.
9. If a controls provides only a local maximum of the function H, then it does not satisfy the maximum principle and therefore is not optimal.
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